APPM 2350 - Recitation Fall 2016

Chain Rule, Directional Derivatives, and Optimization
1. Chain Rule

Consider the function z = f(x, y) where (z,y) is a function of w, v, and w, i.e., (z, y) = g(u, v, w).
(Note that f : R? - Rand g : R* — R? so fog: R?® — R.) Suppose that we want to know the partial
derivatives of z with respect to u, v, and w.

(a) Draw a tree diagram to understand how z depends on each variable. Use this to find %7 %, and g—;.
(c) If, for example, z = 2%y, ¥ = u + v, and y = vow?, find V2.

(d) Check your answer to (c) by substituting expressions for z and y into z = 2%y and then differentiating.

’2. Directional Derivative

Suppose that over a certain region of space, the electrical potential V is given by V (z, y, 2) = 52?2+ 3xy+zyz.
(a) Find the rate of change of the potential at P = (3,4,5) in the direction of vector v =i+ j — k.
(b) In what direction does V' change most rapidly at P?

(b) What is the maximum rate of change at P?
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3. Critical Points and the Second Derivative Test

A simple case of constrained optimization is finding the local max/min of the function f(Z) subject to
the constraint g(#) = ¢. Use your knowledge of critical points and the second derivative test to minimize
22 + 9% 4 22 subject to z + 2y + z = 6. (Recall: critical points @ satisfy ¥ f(@) = 0.)

4. Lagrange multipliers ‘

Now let’s consider the same problem with Lagrange multipliers. One interpretation is that the Lagrange
multiplier represents a penalty. Then the problem minimize f(Z) such that g(Z) = ¢ can be thought of as

—

minimizing f(Z) + AM(c — g(Z)). By setting the gradient of this system equal to zero, we find that critical
points satisfy

{ﬁ'f = \Vg,
g9(¥) = ¢

Use this to minimize 22 + y? + 22 subject to x + 2y + z = 6.
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